Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6533, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503773

RESUMO

Nitrogen (N) and phosphorus (P) are vital for crop growth. However, most agricultural systems have limited inherent ability to supply N and P to crops. Biochars (BCs) are strongly advocated in agrosystems and are known to improve the availability of N and P in crops through different chemical transformations. Herein, a soil-biochar incubation experiment was carried out to investigate the transformations of N and P in two different textured soils, namely clay loam and loamy sand, on mixing with rice straw biochar (RSB) and acacia wood biochar (ACB) at each level (0, 0.5, and 1.0% w/w). Ammonium N (NH4-N) decreased continuously with the increasing incubation period. The ammonium N content disappeared rapidly in both the soils incubated with biochars compared to the unamended soil. RSB increased the nitrate N (NO3-N) content significantly compared to ACB for the entire study period in both texturally divergent soils. The nitrate N content increased with the enhanced biochar addition rate in clay loam soil until 15 days after incubation; however, it was reduced for the biochar addition rate of 1% compared to 0.5% at 30 and 60 days after incubation in loamy sand soil. With ACB, the net increase in nitrate N content with the biochar addition rate of 1% remained higher than the 0.5% rate for 60 days in clay loam and 30 days in loamy sand soil. The phosphorus content remained consistently higher in both the soils amended with two types of biochars till the completion of the experiment.


Assuntos
Compostos de Amônio , Poluentes do Solo , Solo/química , Fósforo , Areia , Argila , Nitratos , Nitrogênio , Carvão Vegetal/química , Poluentes do Solo/análise
2.
Sci Rep ; 14(1): 1399, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228839

RESUMO

In the context of degradation of soil health, environmental pollution, and yield stagnation in the rice-wheat system in the Indo-Gangetic Plains of South Asia, an experiment was established in split plot design to assess the long-term effect of crop residue management on productivity and phosphorus requirement of wheat in rice-wheat system. The experiment comprised of six crop residue management practices as the main treatment factor with three levels (0, 30 and 60 kg P2O5 ha-1) of phosphorus fertilizer as sub-treatments. Significant improvement in soil aggregation, bulk density, and infiltration rate was observed under residue management (retention/incorporation) treatments compared to residue removal or residue burning. Soil organic carbon (SOC), available nutrient content (N, P, and K), microbial count, and enzyme activities were also significantly higher in conservation tillage and residue-treated plots than without residue/burning treatments. The residue derived from both crops when was either retained/incorporated improved the soil organic carbon (0.80%) and resulted in a significant increase in SOC (73.9%) in the topsoil layer as compared to the conventional practice. The mean effect studies revealed that crop residue management practices and phosphorus levels significantly influenced wheat yield attributes and productivity. The higher grain yield of wheat was recorded in two treatments, i.e. the basal application of 60 kg P2O5 ha-1 without residue incorporation and the other with half the P-fertilizer (30 kg P2O5 ha-1) with rice residue only. The grain yield of wheat where the rice and wheat residue were either retained/incorporated without phosphorus application was at par with 30 and 60 kg P2O5ha-1. Phosphorus levels also significantly affected wheat productivity and available P content in the soil. Therefore, results suggested that crop residue retention following the conservation tillage approach improved the yield of wheat cultivated in the rice-wheat cropping system.


Assuntos
Oryza , Solo , Solo/química , Agricultura/métodos , Triticum/metabolismo , Oryza/metabolismo , Fósforo/metabolismo , Carbono/metabolismo , Fertilizantes/análise , Grão Comestível/metabolismo , Fertilização
3.
Sci Rep ; 13(1): 14981, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696862

RESUMO

The design and selection of ideal emitter discharge rates can be aided by accurate information regarding the wetted soil pattern under surface drip irrigation. The current field investigation was conducted in an apple orchard in SKUAST- Kashmir, Jammu and Kashmir, a Union Territory of India, during 2017-2019. The objective of the experiment was to examine the movement of moisture over time and assess the extent of wetting in both horizontal and vertical directions under point source drip irrigation with discharge rates of 2, 4, and 8 L h-1. At 30, 60, and 120 min since the beginning of irrigation, a soil pit was dug across the length of the wetted area on the surface in order to measure the wetting pattern. For measuring the soil moisture movement and wetted soil width and depth, three replicas of soil samples were collected according to the treatment and the average value were considered. As a result, 54 different experiments were conducted, resulting in the digging of pits [3 emitter discharge rates × 3 application times × 3 replications × 2 (after application and 24 after application)]. This study utilized the Drip-Irriwater model to evaluate and validate the accuracy of predictions of wetting fronts and soil moisture dynamics in both orientations. Results showed that the modeled values were very close to the actual field values, with a mean absolute error of 0.018, a mean bias error of 0.0005, a mean absolute percentage error of 7.3, a root mean square error of 0.023, a Pearson coefficient of 0.951, a coefficient of correlation of 0.918, and a Nash-Sutcliffe model efficiency coefficient of 0.887. The wetted width just after irrigation was measured at 14.65, 16.65, and 20.62 cm; 16.20, 20.25, and 23.90 cm; and 20.00, 24.50, and 28.81 cm in 2, 4, and 8 L h-1, at 30, 60, and 120 min, respectively, while the wetted depth was observed 13.10, 16.20, and 20.44 cm; 15.10, 21.50, and 26.00 cm; 19.40, 25.00, and 31.00 cm, respectively. As the flow rate from the emitter increased, the amount of moisture dissemination grew (both immediately and 24 h after irrigation). The soil moisture contents were observed 0.4300, 0.3808, 0.2298, 0.1604, and 0.1600 cm3 cm-3 just after irrigation in 2 L h-1 while 0.4300, 0.3841, 0.2385, 0.1607, and 0.1600 cm3 cm-3 were in 4 L h-1 and 0.4300, 0.3852, 0.2417, 0.1608, and 0.1600 cm3 cm-3 were in 8 L h-1 at 5, 10, 15, 20, and 25 cm soil depth in 30 min of application time. Similar distinct increments were found in 60, and 120 min of irrigation. The findings suggest that this simple model, which only requires soil, irrigation, and simulation parameters, is a valuable and practical tool for irrigation design. It provides information on soil wetting patterns and soil moisture distribution under a single emitter, which is important for effectively planning and designing a drip irrigation system. Investigating soil wetting patterns and moisture redistribution in the soil profile under point source drip irrigation helps promote efficient planning and design of a drip irrigation system.

4.
Heliyon ; 9(6): e16645, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346349

RESUMO

Sporadic burning of rice straw and the particulate air pollution caused consequently have created a pressing need for identification of practical environmentally sound in situ rice residue management methods. However, the agronomic interventions associated with the agri-inputs particularly the type of nitrogen fertilizer source must be worked out for these interventions. In a two-year field study performed at two different locations representing sandy loam and clay loam soil types, zero tillage with application of nitrophosphate (applied as basal dose through drilling) in combination with urea (applied at 1st irrigation + 3 foliar sprays of urea at weekly interval) significantly enhanced the grain and straw yield of wheat. The soil microbial viable cell counts and dehydrogenase and urease enzyme activities were also recorded to be highest in this treatment indicating the occurrence of higher living microbial population. The treatment × response variable Principle component analysis (PCA) biplot depicted relative variation among the residue management treatments/Nitrogen fertilizer sub-treatments and the enzyme activities as response variables. A variation in the soil organic content components was recognized through Fourier transform infra-red spectroscopy (FT-IRS) studies. Irrespective of the soil types under study, the FT-IR spectra exhibited presence of the aromatic carbon functional groups in residue incorporated treatments as compared to the no residue incorporation treatment.

5.
Molecules ; 28(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175286

RESUMO

This work describes an ab initio principle computational examination of the optical, structural, elastic, electronic and mechanical characteristics of aluminum-based compounds AlRF3 (R = N, P) halide-perovskites. For optimization purposes, we used the Birch-Murnaghan equation of state and discovered that the compounds AlNF3 and AlPF3 are both structurally stable. The IRelast software was used to compute elastic constants (ECs) of the elastic properties. The aforementioned compounds are stable mechanically. They exhibit strong resistance to plastic strain, possess ductile nature and anisotropic behavior and are scratch-resistant. The modified Becke-Johnson (Tb-mBJ) approximation was adopted to compute various physical properties, revealing that AlNF3 and AlPF3 are both metals in nature. From the density of states, the support of various electronic states in the band structures are explained. Other various optical characteristics have been calculated from the investigations of the band gap energy of the aforementioned compounds. These compounds absorb a significant amount of energy at high levels. At low energy levels, the compound AlNF3 is transparent to incoming photons, whereas the compound AlPF3 is somewhat opaque. The examination of the visual details led us to the deduction that the compounds AlNF3 and AlPF3 may be used in making ultraviolet devices based on high frequency. This computational effort is being made for the first time in order to investigate the aforementioned properties of these chemicals, which have yet to be confirmed experimentally.

6.
Biology (Basel) ; 12(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37106810

RESUMO

The distribution of large ungulates is more often negatively impacted by the changing climate, especially global warming and species with limited distributional zones. While developing conservation action plans for the threatened species such as the Himalayan goral (Naemorhedus goral Hardwicke 1825; a mountain goat that mostly inhabits rocky cliffs), it is imperative to comprehend how future distributions might vary based on predicted climate change. In this work, MaxEnt modeling was employed to assess the habitat suitability of the target species under varying climate scenarios. Such studies have provided highly useful information but to date no such research work has been conducted that considers this endemic animal species of the Himalayas. A total of 81 species presence points, 19 bioclimatic and 3 topographic variables were employed in the species distribution modeling (SDM), and MaxEnt calibration and optimization were performed to select the best candidate model. For predicted climate scenarios, the future data is drawn from SSPs 245 and SSPs 585 of the 2050s and 2070s. Out of total 20 variables, annual precipitation, elevation, precipitation of driest month, slope aspect, minimum temperature of coldest month, slope, precipitation of warmest quarter, and temperature annual range (in order) were detected as the most influential drivers. A high accuracy value (AUC-ROC > 0.9) was observed for all the predicted scenarios. The habitat suitability of the targeted species might expand (about 3.7 to 13%) under all the future climate change scenarios. The same is evident according to local residents as species which are locally considered extinct in most of the area, might be shifting northwards along the elevation gradient away from human settlements. This study recommends additional research is conducted to prevent potential population collapses, and to identify other possible causes of local extinction events. Our findings will aid in formulating conservation plans for the Himalayan goral in a changing climate and serve as a basis for future monitoring of the species.

7.
Biology (Basel) ; 12(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37106809

RESUMO

Numerous investigations on plant ethnomedicinal applications have been conducted; however, knowledge about the medicinal use of wild animals is still limited. This present study is the second on the medicinal and cultural meaning of avian and mammalian species used by the population in the surrounding area of the Ayubia National Park, KPK, Pakistan. Interviews and meetings were compiled from the participants (N = 182) of the study area. The relative frequency of citation, fidelity level, relative popularity level, and rank order priority indices were applied to analyze the information. Overall, 137 species of wild avian and mammalian species were documented. Of these, 18 avian and 14 mammalian species were utilized to treat different diseases. The present research showed noteworthy ethno-ornithological and ethno-mammalogical knowledge of local people and their connection with fauna, which might be useful in the sustainable utilization of the biological diversity of the Ayubia National Park, Khyber Pakhtunkhwa. Furthermore, in vivo and/or in vitro examination of the pharmacological activities of species with the highest fidelity level (FL%) as well as frequency of mention (FM) might be important for investigations on faunal-based new drugs.

8.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049061

RESUMO

Modern nanotechnology encompasses every field of life. Nowadays, phytochemically fabricated nanoparticles are being widely studied for their bioactivities and biosafety. The present research studied the synthesis, characterization, stability, biocompatibility, and in vitro bioactivities of calcium oxide nanoparticles (CaONPs). The CaONPs were synthesized using Citrullus colocynthis ethanolic fruit extracts. Greenly synthesized nanoparticles had an average size of 35.93 ± 2.54 nm and showed an absorbance peak at 325 nm. An absorbance peak in this range depicts the coating of phenolic acids, flavones, flavonols, and flavonoids on the surface of CaONPs. The XRD pattern showed sharp peaks that illustrated the preferred cubic crystalline nature of triturate. A great hindrance to the use of nanoparticles in the field of medicine is their extremely reactive nature. The FTIR analysis of the CaONPs showed a coating of phytochemicals on their surface, due to which they showed great stability. The vibrations present at 3639 cm-1 for alcohols or phenols, 2860 cm-1 for alkanes, 2487 cm-1 for alkynes, 1625 cm-1 for amines, and 1434 cm-1 for carboxylic acids and aldehydes show adsorption of phytochemicals on the surface of CaONPs. The CaONPs were highly stable over time; however, their stability was slightly disturbed by varying salinity and pH. The dialysis membrane in vitro release analysis revealed consistent nanoparticle release over a 10-h period. The bioactivities of CaONPs, C. colocynthis fruit extracts, and their synergistic solution were assessed. Synergistic solutions of both CaONPs and C. colocynthis fruit extracts showed great bioactivity and biosafety. The synergistic solution reduced cell viability by only 14.68% and caused only 16% hemolysis. The synergistic solution inhibited Micrococcus luteus slightly more effectively than streptomycin, with an activity index of 1.02. It also caused an 83.87% reduction in free radicals.

9.
Sci Rep ; 13(1): 5077, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977808

RESUMO

Nowadays, Combine Harvesters are the most commonly used device for harvesting crops; as a result, a large amount of plant material and crop residue is concentrated into a narrow band of plant material that exits the combine, challenging the residue management task. This paper aims to develop a crop residue management machine that can chop paddy residues and mix them with the soil of the combined harvested paddy field. For this purpose, two important units are attached to the developed machine: the chopping and incorporation units. The tractor operates this machine as the main source, with a power range of about 55.95 kW. The four independent parameters selected for the study were rotary speed (R1 = 900 & R2 = 1100 rpm), forward speed (F1 = 2.1 & F2 = 3.0 Kmph), horizontal adjustment (H1 = 550 & H2 = 650 mm), and vertical adjustment (V1 = 100 & V2 = 200 mm) between the straw chopper shaft and rotavator shaft and its effect was found on incorporation efficiency, shredding efficiency, and trash size reduction of chopped paddy residues. The incorporation of residue and shredding efficiency was highest at V1H2F1R2 (95.31%) and V1H2F1R2 (61.92%) arrangements. The trash reduction of chopped paddy residue was recorded maximum at V1H2F2R2 (40.58%). Therefore, this study concludes that the developed residue management machine with some modifications in power transmission can be suggested to the farmers to overcome the paddy residue issue in combined harvested paddy fields.

10.
Microbiol Res ; 266: 127237, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36270107

RESUMO

AIM: of the current research was to use plant growth promoting rhizobacteria for sequestration and biotransformation of the toxic form of Cr and As into non-toxic form. Remediating these contaminants using microbes is a common technique and rhizo-microbiota not only relieves metal stress but also acts as biofertilizers. Role of plant growth-promoting rhizobacterial (PGPR) strains Acinetobacter beijerinckii (C5) and Raoultella planticola (C9) in counteracting chromium and arsenic stress in soybean seedlings was assessed. The isolated rhizobacteria were able to tolerate excessive quantities (up to 1200 ppm) of chromate and arsenate in liquid media. Beside their growth in heavy metal containing media, the strains were able to bio-transform chromate and arsenate to their least toxic form. They released significant quantities of stress related metabolites including phenols, flavonoids, proline, sugars and protein even in the presence of 1200 ppm of the heavy metals. They also released several plant hormones together with indole-3-acetic acid (IAA), salicylic acid (SA) and gibberellins. Another important feature of the isolates was their ability to solubilize phosphate and release siderophores and exposure to different levels of the selected heavy metals enhanced phosphate solubilization potential of both the isolates by up to 2-fold. Release of siderophore in A. beijerinckii C5 was enhanced by increasing heavy metals concentration in the media but in case of R. planticola C9 a decline was noted. When inoculated on soybean seedlings, the isolates modulated several metabolites of the hos plant enabling them to combat heavy metal toxicity at different levels. The PGPR strains boosted host's antioxidants production which minimized the oxidative damage by scavenging excessive ROS produced under stress. Control plants showed upregulation of stress response metabolites compared to PGPR application, whereas, IAA and SA were significantly higher in PGPR associated seedlings. In conclusion, PGPR alters the physiological and metabolic responses of soybean enabling it to cope better with chromate and arsenic toxicity and grow well under the stress.


Assuntos
Arsênio , Metais Pesados , Reguladores de Crescimento de Plantas/metabolismo , Arseniatos , Cromatos , Metais Pesados/metabolismo , Plântula , Sideróforos/metabolismo , Fosfatos
11.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234802

RESUMO

In the current study, soil samples were gathered from different places where petrol and diesel filling stations were located for isolation of photosynthetic bacteria under anaerobic conditions using the paraffin wax-overlay pour plate method with Biebl and Pfennig's medium. The three isolated strains were named Rhodopseudomonas palustris SMR 001 (Mallapur), Rhodopseudomonas palustris NR MPPR (Nacahram) and Rhodopseudomonas faecalis N Raju MPPR (Karolbagh). The morphologies of the bacteria were examined with a scanning electron microscope (SEM). The phylogenetic relationship between R. palustris strains was examined by means of 16S rRNA gene sequence analysis using NCBI-BLAST search and a phylogenetic tree. The sequenced data for R. palustris were deposited with the National Centre for Biotechnology Research (NCBI). The total amino acids produced by the isolated bacteria were determined by HPLC. A total of 14 amino acids and their derivatives were produced by the R. palustris SMR 001 strain. Among these, carnosine was found in the highest concentration (8553.2 ng/mL), followed by isoleucine (1818.044 ng/mL) and anserine (109.5 ng/mL), while R. palustris NR MPPR was found to produce 12 amino acids. Thirteen amino acids and their derivatives were found to be produced from R. faecalis N Raju MPPR, for which the concentration of carnosine (21601.056 ng/mL) was found to be the highest, followed by isoleucine (2032.6 ng/mL) and anserine (227.4 ng/mL). These microbes can be explored for the scaling up of the process, along with biohydrogen and single cell protein production.


Assuntos
Aminoácidos , Carnosina , Aminoácidos/genética , Anserina , Isoleucina , Parafina , Filogenia , RNA Ribossômico 16S/genética , Rodopseudomonas , Solo
12.
Materials (Basel) ; 15(17)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36079324

RESUMO

Al-based fluoroperovskites compounds AlMF3 (M = Cr, B) are investigated computationally and calculated their elastic, structural, optical, and electrical properties in this study utilising TB-MBJ potential (also GGA+U for AlCrF3) approximations, according to the Birch Murnaghan Equation curve and tolerance factor, these material are structurally cubic and stable. The IRelast algorithm is used to forecast elastic properties, and the outputs show that these compound are mechanically stable, anisotropic and ductile. AlBF3 has a metallic nature and overlapping states, while AlCrF3 have a narrow indirect band gap at (X-M) points of symmetry, with band gaps of 0.71 eV for AlCrF3 and zero eV for AlBF3. The partial and total density of states are being used to determine the influences of different basic states to the conduction and valence bands (TDOS & PDOS). Investigation of Optical properties shows that these compounds have low refractive index and high absorption coefficient, conductivity, reflective coefficient at high energy ranges. Owing to the indirect band gap, the applications of these compounds are deemed in conducting industries. Here we are using these compounds for first time and are examined using the computational method, which delivers a complete view into the different properties.

13.
Animals (Basel) ; 12(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077997

RESUMO

Animal-derived products have an important role in treating many health conditions and have widely been used across cultures. In South Asia, ethnozoological research has been conducted only by a small number of researchers. Therefore, this area of research needs further exploration in order to preserve the eroding ethnozoological knowledge of medicinal animals severely affected by ongoing social change. This study was conducted in the region of Jammu and Kashmir from February 2019 to August 2021. The study was carried out among eight different ethnic groups living in the region. A total of 374 informants were selected and data were collected through semi-structured interviews and verified through group discussions. Data was analyzed using different statistical tools, including R 4.0.0. The cross-cultural data were compared through Bioinformatics and Evolutionary Genomics software and later subjected to further analysis, applying Pearson correlation and ordination techniques (Principal Component Analysis). We recorded a total of 79 animal species being used by the eight studied ethnic groups in the region. Wild animal species were mainly used for therapeutic purposes. Chest infections, sexual problems, and paralysis were frequently treated diseases. Flesh was the most commonly part used. The cross-cultural comparison showed a remarkable heterogeneity in the use of the animals among the different groups, which could be an effect to the historical sociocultural stratifications, as well as different religious affiliation of certain groups preventing them to forage or hunt certain animals. Some groups however showed prominent overlap of uses of some recorded species. For instance, Lerwalerwa and Bubalus bubalis were commonly used by both Gujjar and Pahari, which could be referred to the fact that they have gone through significant socio-cultural contact, and they are exogamous to each other. The Pearson correlation coefficient supported the strength and direction of an association between ethnic groups and regions. The study makes an important contribution to the field of ethnozoology in the Himalayas by providing insights to understand the historical human and nature relationships and supplying a baseline for developing future conservation efforts in the region to protect the wild fauna.

14.
Front Plant Sci ; 13: 922343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003803

RESUMO

Wheat crop has to compete with several weeds including Avena fatua, a noxious weed that alone is responsible for 30-70% losses in the yield annually. Because of the environmental concerns associated with conventional methods, researchers are on a continuous hunt to find clean alternatives in order to manage weeds. Fungi have shown promising weedicide potential in lab studies. The current study aimed to isolate endophytic fungi from wheat plants which can promote wheat growth and inhibit the growth of common weed, A. fatua. Of several isolates, GW (grayish white) was selected for its promising features, and the strain was identified as Fusarium oxisporum through ITS sequencing technique. This fungus released a number of compounds including Isovitexin, Calycosin, quercetagetin, and dihydroxy-dimethoxyisoflavone that inhibited the growth of A. fatua but did not influence the growth of wheat seedlings. Biomass of this fungus in the soil also reduced growth parameters of the weed and promoted the growth of wheat. For instance, the vigor index of A. fatua seedlings was reduced to only 6% of the control by this endophyte. In contrast, endophyte-associated wheat seedlings showed a higher vigor index than the control. Behind this differential response of the two plants were their contrasting physiological and biochemical status. Lower growth phenotypes of A. fatua seedlings had reduced levels of IAA, GAs, and SA and higher the levels of JA and ABA. Besides, their ROS scavenging ability was also compromised as evident from relatively lower activities of catalase, peroxidase, and ascorbic acid oxidase, as well as higher accumulation of ROS in their leaves. Wheat seedlings response to GW was opposite to the A. fatua. It may be concluded that F. oxysporum GW has the ability to differentially modulate physiology and biochemistry of the two hosts leading to contrasting phenotypic responses.

15.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013818

RESUMO

This work displays the structural, electronic, elastic, optical, and magnetic properties in spin-polarized configurations for cubic fluoroperovskite ABF3 (A = Tl, B = Nb, V) compounds studied by density functional theory (DFT) by means of the Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach. The ground state characteristics of these compounds, i.e., the lattice parameters a0, bulk modulus (B), and its pressure derivative B' are investigated. The structural properties depict that the selected compounds retain a cubic crystalline structure and have stable ground state energy. Electronic-band structures and DOS (density of states) in spin-polarized cases are studied which reports the semiconducting nature of both materials. The TDOS (total density of states) and PDOS (partial density of states) studies in both spin configurations show that the maximum contributions of states to the different bands is due to the B-site (p-states) atoms as well as F (p-states) atoms. Elastic properties including anisotropy factor (A), elastic constants, i.e., C11, C12, and C44, Poisson's ratio (υ), shear modulus and (G), Young's modulus (E) are computed. In terms of elastic properties, the higher (bulk modulus) "B" and ratio of "B/G" yield that these materials exhibit a ductile character. Magnetic properties indicate that both the compounds are ferromagnetic. In addition, investigations of the optical spectra including the real (ε1ω) and imaginary (ε2ω) component of the dielectric function, refractive index nω, optical reflectivity Rω, optical conductivity σω, absorption coefficient αω, energy loss function Lω, and electron extinction coefficient kω are carried out which shows the transparent nature of TlVF3 and TlNbF3. Based on the reported research work on these selected materials, their applications can be predicted in many modern electronic gadgets.

16.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014400

RESUMO

The present study describes the green biofunctional synthesis of magnesium oxide (MgO) nanoparticles using the aqueous Tarenna asiatica fruit extract. The characterization of Tarenna asiatica fruit extract MgO nanoparticles (TAFEMgO NPs) was achieved by X-ray powder diffraction, UV-Vis spectroscopy, FTIR, TEM, SEM, and energy-dispersive X-ray diffraction. TAFEMgO NPs scavenged the DPPH free radicals with an IC50 value of 55.95 µg/µL, and it was highly significant compared to the standard. To authenticate the observed antioxidant potential of TAFEMgO NPs, oxidative stress was induced in red blood cells (RBC) using sodium nitrite (NaNO2). Interestingly, TAFEMgO NPs ameliorated the RBC damage from oxidative stress by significantly restoring the stress parameters, such as the protein carbonyl content (PCC), lipid peroxidation (LPO), total thiol (TT), super-oxide dismutase (SOD), and catalase (CAT). Furthermore, oxidative stress was induced in-vivo in Sprague Dawley female rats using diclofenac (DFC). TAFEMgO NPs normalized the stress parameters in-vivo and minimized the oxidative damage in tissues. Most importantly, TAFEMgO NPs restored the function and architecture of the damaged livers, kidneys, and small intestines by regulating biochemical parameters. TAFEMgO NPs exhibited an anticoagulant effect by increasing the clotting time from 193 s in the control to 885 s in the platelet rich plasma. TAFEMgO NPs prolonged the formation of the clot process in the activated partial thromboplastin time and the prothrombin time, suggest the effective involvement in both intrinsic and extrinsic clotting pathways of the blood coagulation cascade. TAFEMgO NPs inhibited adenosine di-phosphate (ADP)-induced platelet aggregation. TAFEMgO NPs did not show hemolytic, hemorrhagic, and edema-inducing properties at the tested concentration of 100 mg/kgbody weight, suggesting its non-toxic property. In conclusion, TAFEMgO NPs mitigates the sodium nitrite (NaNO2)- and diclofenac (DFC)-induced stress due to oxidative damage in both in vitro and in vivo experimental models.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Trombose , Animais , Diclofenaco/farmacologia , Feminino , Óxido de Magnésio/química , Óxido de Magnésio/farmacologia , Nanopartículas Metálicas/química , Nanopartículas/química , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Carbonilação Proteica , Ratos , Ratos Sprague-Dawley , Nitrito de Sódio/farmacologia
17.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014503

RESUMO

This paper explains our first-principle computational investigation regarding the structural, optical, elastic, and electrical characteristics of gallium-based GaMF3 (M = Be and Ge) perovskite-type (halide-perovskite) compounds. Our current computation is based on density functional theory (DFT) and is achieved with the help of the WIEN2k code. We used the Birch-Murnaghan equation for optimization; in both compounds, we found that both GaBeF3 and GaGeF3 compounds are structurally stable. For the computation of elastic characteristics, the IRelast package for calculating elastic constants (ECs) is utilized. These compounds are mechanically ductile, scratch-resistant, anisotropic, and mechanically stable, showing huge opposition to plastic strain. The modified Becke-Johnson (TB-mBJ) potential approximation method is used to calculate different physical characteristics and shows that GaGeF3 behaves as a metal, whereas the GaBeF3 compound is insulating in nature. The involvement of various electronic states in band structures is calculated using the theory of the density of states. The different optical properties of these compounds can be studied easily using their band gap energy. At high energy ranges, these substances demonstrate strong absorption. At low energies, the GaGeF3 compound is transparent, while the GaBeF3 compound is opaque to incoming photons. Investigation of the optical characteristics has led us to the conclusion that both GaGeF3 and GaBeF3 compounds can be used for high-frequency ultraviolet device applications. This computational work is considered to be the first time that we can study these compounds, which to our knowledge have not previously been experimentally validated.

18.
Antioxidants (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35739952

RESUMO

Aconitum chasmanthum Stapf ex Holmes, an essential and critically endangered medicinal plant from Kashmir Himalayas, was studied for its antioxidant and antifungal properties. The shade-dried powdered rhizome was extracted sequentially with hexane, ethyl acetate, and methanol. These subsequent fractions were evaluated for total phenolic content (TPC); total flavonoid content (TFC); antioxidant assays, such as 1,1-diphenyl 1-2-picryl-hydrazyl (DPPH); ferric-reducing antioxidant power (FRAP); superoxide radical scavenging (SOR); hydroxyl radical scavenging (OH) and antifungal activity using the poisoned food technique. Highest TPC (5.26 ± 0.01 mg/g) and TFC (2.92 ± 0.04 mg/g) were reported from methanolic extracts. The highest values of radical scavenging activities were also observed in methanolic extracts with IC50 values of 163.71 ± 2.69 µg/mL in DPPH, 173.69 ± 4.91 µg/mL in SOR and 159.64 ± 2.43 µg/mL in OH. The chemical profile of ethyl acetate extract was tested using HR-LCMS. Methanolic extracts also showed a promising inhibition against Aspergillus niger (66.18 ± 1.03), Aspergillus flavus (78.91 ± 1.19) and Penicillium notatum (83.14 ± 0.97) at a 15% culture filtrate concentration with minimum inhibitory concentration (MIC) values of 230 µg/mL, 200 µg/mL and 190 µg/mL, respectively. Overall, the methanolic fractions showed significant biological potential, and its pure isolates might be used to construct a potential new medicinal source.

19.
Plants (Basel) ; 11(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35567180

RESUMO

Climate change (CC) is a global threat to the agricultural system. Changing climatic conditions are causing variations in temperature range, rainfall timing, humidity percentage, soil structure, and composition of gases in environment. All these factors have a great influence on the phenological events in plants' life cycle. Alternation in phenological events, especially in crops, leads to either lower yield or crop failure. In light of respective statement, the present study is designed to evaluate the climatic impacts on two heat-resistant wheat varieties (Sialkot-2008 and Punjab-2018). During the study, impacts of CC on wheat phenology and annual yield were predicted considering six climatic factors: maximum temp, minimum temperature, precipitation, humidity, soil moisture content, and solar radiation using two quantitative approaches. First, a two-year field experimental plot was set up at five different sites of study-each plot a bisect of two sites. Phenological changes of both varieties were monitored with respect to climatic factors and changes were recorded in a scientific manner. Secondly, experimental results were compared with Global climate models (GMC) models with a baseline range of the past 40 years (1970-2010) and future fifty years (2019-2068) under Representative Concentration Pathway (RCP) 8.5 model analysis. Field experiment showed a (0.02) difference in maximum temperature, (0.04) in minimum temperature, (0.17) in humidity, and about (0.03) significant difference in soil moisture content during 2019-2021. Under these changing climatic parameters, a 0.21% difference was accounted in annual yield. Furthermore, the results were supported by GMC model analysis, which was analyzed by Decision Support System for Agrotechnology Transfer (DSSAT) model. Results depicted that non-heat-resistant wheat varieties could cause up to a 6~13% reduction in yield during future 50 years (2019-2068)) compared with the last 40 years (1970-2010). A larger decline in wheat grain number relative to grain weight is a key reducer of wheat yield, under future climate change circumstances. Using heat-tolerant wheat varieties will not only assist to overcome this plethora but also provide a potential increase of up to 7% to 10% in indigenous environment. On the other hand, it was concluded that cultivating these heat-resistant varieties that are also ripening late culminates into enhanced thermal time chucks during the grain-filling period; hence, wheat yield will increase by 8% to 12%. In changing climatic conditions and varieties, 'Punjab-2018' will be the better choice for peasants and farm-land owners to obtain a better yield of wheat to cope with the necessities of food on the domestic and national level.

20.
Sci Rep ; 9(1): 2825, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30809015

RESUMO

The Umm er Radhuma (UER) Formation is a major karst aquifer in Saudi Arabia. This study investigated the hydraulic and petrophysical characteristics of the folded UER carbonate aquifer using integrated hydrological and geophysical logging datasets to understand its complex hydraulic setting as well as detect possible water flow. Petrophysical analysis showed that the UER aquifer has three zones with different lithologic and hydraulic properties. The upper zone attains the best properties with average values of 20%, >100 mD, 3.30 × 10-5-1.34 × 10-3 m/s, and 1.49 × 10-3-6.04 × 10-2 m2/s, with respect to effective porosity, permeability, hydraulic conductivity and transmissivity. The gamma-ray logs indicate a good fracture system near the upper zone of the UER Formation. Pumping test measurements of transmissivity, hydraulic conductivity and storage coefficients were matched with those from geophysical logs and found to be within the expected range for confined and leaky aquifers. Hydrogeological properties were mapped to detect possible groundwater flow in relation to the dominant structure. The underground water of the folded UER aquifer was forced along meandering flow patterns from W-E to SW-NE through the anticlinal axes. The integrated approach can be further used to enhance local aquifer models and improve strategies for identifying the most productive zones in similar aquifer systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...